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This work is focused on the processes underlying the dynamics of spatially inhomogeneous plankton communi-
ties. We demonstrate that reaction–diffusion mathematical models are an appropriate tool for searching and  
understanding basic mechanisms of complex spatio-temporal plankton dynamics and fractal properties of  
planktivorous fish school walks. 

1. Introduction 

1.1 Patterns in nonlinear nonequilibrium systems 

The exploration of pattern formation mechanisms in  
complex nonlinear systems is one of the central problems 
of natural, social, and technological sciences (Haken 
1977; Nicolis and Prigogine 1977; Weidlich and Haag 
1983). The occurrence of multiple steady states and  
transitions from one to another after critical fluctuations, 
the phenomena of excitability, oscillations, waves and, in 
general, the emergence of macroscopic order from micro-
scopic interactions in various nonlinear nonequilibrium 
systems in nature and society has required and stimu- 
lated many theoretical and, where possible, experimental 
studies. 

The classical approach to the solution of the problem  
of the origin of spatial structures was first developed by 
Turing (1952) and then elaborated in the works of his 
followers (appropriate references can be found in  
Medvinsky et al 1997). The results obtained in the course 
of these investigations indicate that the initially uniform 
distribution of reacting components can become unstable. 
As the instability develops further, a spatially nonuniform 
distribution (a spatial structure) of activators and inhibi-

tors of the reaction occurs. Turing pattern formation is 
based on the coupling of linear diffusion and nonlinear 
local kinetics of the reaction under conditions when the 
diffusivity of the activator is less than the diffusivity  
of the inhibitor. Fairly recent experimental work by  
de Kepper et al (1991) has demonstrated Turing struc-
tures in the context of chemical reactions. 

A major unsolved problem with the Turing approach  
is that a clear identification of activators and inhibitors 
which could be involved in the formation of patterns of 
different nature: physico-chemical, biological or social, 
mainly remains to be absent and even seems to be hardly 
achievable. Now-a-days, more realistic theoretical approaches 
are in progress. They are able to account for complex  
spatio-temporal dynamics of open spatially confined sys-
tems in terms of the interaction between the intrinsic 
dynamics of the system and external forcing due to the 
impact of the system environment. In ecology, such an 
interaction can include both physico-chemical and bio-
logical factors. In this work we focus on the biological 
factors influencing the dynamics of aquatic communities. 
We study the role of predator invasion, planktivorous fish 
cruising, and the interaction of neighbouring habitats in 
the formation of the complex transient spatio-temporal 
plankton patterns which often occur in the ocean. 
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The paper is organized as follows. In § 1.2 we give a 
short review of the theoretical considerations underlying 
plankton dynamics and conclude that biological factors 
can play a key role in the emergence of plankton spatial 
structures. In § 2, we consider the spatio-temporal dyna-
mics of an aquatic community in terms of a prey–predator 
(i.e. phytoplankton-zooplankton) system and demonstrate 
the efficiency of the two-species minimal model for des-
cribing pattern formation in plankton communities. In § 3, 
we develop a minimal mathematical model describing the 
interplay between plankton spatio-temporal pattern forma-
tion and planktivorous fish school cruising. We show that 
fish school walks can give rise to rather complex plankton 
dynamics. In turn, fish school trajectories depending on 
the plankton dynamics can manifest fractal and multifrac-
tal properties.  

1.2 Plankton and models of plankton dynamics 

Plankton are floating organisms of many different phyla, 
living in the pelagic of the sea, in freshwater or in larger 
rivers. They are to a large extent subjected to water 
movements (Sommer 1994, 1996; Baretta-Bekker et al 
1998). Their functional classification is based on trophic 
level, size and distribution. Autotrophs, i.e. primary pro-
ducers, constitute phytoplankton whereas heterotrophs, 
i.e. consumers, include bacterioplankton and zooplankton. 
A differentiation in size classes is related to the retention 
by different mesh sizes of plankton nets and filters. There 
is picoplankton less than 2 µm, nanoplankton 0⋅2–2 mm, 
macroplankton 2–20 mm and megaplankton greater than 
20 mm (Raymont 1980; Baretta-Bekker et al 1998). 

In the 17th century, the Dutch pioneer microscopist  
Anton van Leeuwenhoek was probably the first human  
being to see minute creatures, which he called animal-
cules, in pond water (Hallegraeff 1988). The German  
Victor Hensen who organized Germany’s first big oceano-
graphic expedition in 1889 (Hensen 1892; Porep 1970) 
introduced the term plankton (due to the Greek plank-
tos = made to wander). 

Phytoplankton are microscopic plants that drive all  
marine ecological communities and the life within them. 
Due to their photosynthetic growth, the world’s phyto-
plankton generate half of the oxygen that mankind needs 
for maintaining life and also absorb half of the carbon  
dioxide that may be contributing to global warming  
(Duinker and Wefer 1994). It is not only oxygen and carbon 
dioxide but there are also other substances and gases that 
are recycled by phytoplankton, e.g. phosphorus, nitrogen 
and sulphur compounds (Bain 1968; Ritschard 1992; Malin 
1997). Hence, the phytoplankton is one of the main factors 
controlling the further development of the world’s climate 
and there is a vast literature supporting such a claim 
(Charlson et al 1987; Williamson and Gribbin 1991). 

Zooplankton are the animals in plankton. In marine 
zooplankton both herbivores and predators occur, herbi-
vores graze on phytoplankton and are eaten by zooplank-
ton predators. Together, phyto- and zooplankton form the 
basis for all food chains and webs in the sea. In its turn, 
the abundance of the plankton species is affected by a 
number of environmental factors such as water tempera-
ture, salinity, sunlight intensity, biogen availability etc. 
(Raymont 1980; Sommer 1994). Temporal variability of 
the species composition is caused by seasonal changes 
and, according to a concept going back to the seminal 
papers of Lotka (1925) and Volterra (1926), due to  
trophical prey–predator interactions between phyto- and 
zooplankton. 

Because of their obvious importance, the dynamics of 
plankton systems have been under continuous investiga-
tions for more than a hundred years. It should be noted 
that practically from the very beginning, regular plankton 
studies have combined field observations, laboratory exp-
eriments and mathematical modelling. It was in the 19th 
century that fisheries stimulated an interest in plankton  
dynamics because strong positive correlations between 
zooplankton and fish abundance were found. The already 
mentioned German plankton expedition of 1889 was 
mainly motivated by fisheries interests. At the same time, 
fishery science began to develop. In the beginning of the 
20th century, the first mathematical models were devel-
oped in order to understand and to predict fish stock dy-
namics and its correlations with biological and physical 
factors and human interventions (Cushing 1975; Gulland 
1977; Steele 1977). 

Contemporary mathematical modelling of phytoplankton 
productivity has its roots in the works of Fleming (1939), 
Ivlev (1945), Riley (1946), Odum (1956) and others. A 
review of the developments has been given by Droop 
(1983). Recently, a collection of the most frequently used 
models has been presented by Behrenfeld and Falkowski 
(1997). 

The control of phytoplankton blooming by zooplankton 
grazing has been modelled first by Fleming (1939), using 
a single ordinary differential equation for the temporal 
dynamics of phytoplankton biomass. Other approaches 
have been the construction of data fitted functions (Riley 
1963) and the application of standard Lotka–Volterra 
equations to describe the prey–predator relations of phyto-
plankton and zooplankton (Segel and Jackson 1972;  
Dubois 1975; Levin and Segel 1976; Vinogradov and 
Menshutkin 1977; Mimura and Murray 1978). More realis-
tic descriptions of zooplankton grazing with functional 
responses to phytoplankton abundance have been intro-
duced by Ivlev (1945) with a certain modification by 
Mayzaud and Poulet (1978). Holling-type response terms 
(Holling 1959) which are also known from Monod or 
Michaelis–Menten saturation models of enzyme kinetics 
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(Michaelis and Menten 1913; Monod and Jacob 1961) are 
just as much in use (Steele and Henderson 1981; 
1992a, b; Scheffer 1991a, 1998; Malchow 1993; Truscott 
and Brindley 1994a, b). Observed temporal patterns  
include the well-known stable prey–predator oscillations 
as well as the oscillatory or monotonic relaxation to one 
of the possibly multiple steady states. Excitable systems 
are of special interest because their long-lasting relaxation 
to the steady state after a supercritical external perturba-
tion like a sudden temperature increase and nutrient in-
flow is very suitable to model red or brown tides 
(Beltrami 1989, 1996; Truscott and Brindley 1994a, b). 

Concerning the temporal variability of plankton species 
abundance, an issue of particular interest concerns the 
limits of its predictability. At early stages, development of 
mathematical models of marine ecosystems was driven by 
the idea that the larger the number of species that were 
explicitly included into the model, the higher would be its 
predictive ability. As a result, a number of many-species 
models appeared allowing for a detailed structure of the 
food web of the community (De Angelis 1992; Jörgensen 
1994; Yodzis 1994). However, the real predictive ability 
of this class of models is not very high and rarely exceeds 
a few weeks. Moreover, the increase of the number of the 
model agents may sometimes make the properties of  
the model even worse. This apparent paradox can be  
explained in terms of dynamical chaos (May 1974; see 
also § 2.3). It should be noted that although strict evi-
dence of chaotic behaviour in natural populations is still 
absent, there are more and more strong indications in favour 
of its existence (Scheffer 1991b, 1998; Godfray and  
Hassell 1997; Huisman and Weissing 1999). Chaotic 
population dynamics changes essentially the very approach 
to system predictability (Scheffer 1991b), and makes  
conceptual few-species models of as much use as many-
species ones. Moreover, few-species models can some-
times be even more instructive since they take into  
account only principal features of community functioning 
(Pascual 1993; Petrovskii and Malchow 1999, 2000b). 

Another interesting problem is the dynamics of exter-
nally forced systems. Ideally periodic forcing appears rather 
naturally due to daily, seasonal or annual cycles, photo-
synthetically active radiation, temperature, nutrient avail-
ability etc. (Evans and Parslow 1985; Truscott 1995; 
Popova et al 1997; Ryabchenko et al 1997). Natural  
forcing is of course superposed by a certain environ-
mental noise. A number of forcing models for parts of or 
the complete food chain from nutrients, phytoplankton 
and zooplankton to planktivorous fish have been investi-
gated and many different routes to chaotic dynamics have 
been demonstrated (Kuznetsov et al 1992; Ascioti et al 
1993; Doveri et al 1993; Rinaldi and Muratori 1993; 
Steffen and Malchow 1996a, b; Steffen et al 1997; Schef-
fer et al 1997; Scheffer 1998). 

The abundance of plankton species is not only subject 
to temporal changes but also depends on space. Distinct 
spatial heterogeneity of plankton distribution (also known 
as patchiness) is found in many field observations 
(Fasham 1978; Steele 1978; Mackas and Boyd 1979; 
Greene et al 1992; Abbott 1993). This phenomenon takes 
place on all scales, from centimetres to kilometres. A 
number of explanations has been suggested, particularly, 
relating the spatial structure of a plankton system to  
marine turbulence (Platt 1972) or to the inhomogeneity of 
the temperature field in the ocean (Denmann 1976). A 
well-studied stripy plankton pattern is due to trapping of 
populations of sinking microorganisms in Langmuir circu-
lation cells (Stommel 1948; Leibovich 1993). Other physi-
cally determined plankton distributions like steep density 
gradients due to local temperature differences, nutrient 
upwelling, turbulent mixing or internal waves have been 
reported too (Yoder et al 1994; Franks 1997; Abraham 
1998). 

On a small spatial scale of some tens of centimetres  
and under relative physical uniformity also differences in 
diffusive mobility of individuals and the ability of loco-
motion might create finer spatial structures, e.g. due to 
bioconvection and gyrotaxis (Platt 1961; Winet and Jahn 
1972; Pedley and Kessler 1992; Timm and Okubo 1994). 
Till now, not for plankton but for certain bacteria, the 
mechanism of diffusion-limited aggregation (Witten and 
Sander 1981) has been proposed and experimentally proven 
to lead to the spatial fingering of colonies (Matsushita and 
Fujikawa 1990; Ben-Jacob et al 1992). 

Thus, mathematical models of plankton population dyna-
mics have not only to account for growth and interactions 
but also for spatial processes like random or directed and 
joint or relative motion of species as well as the varia-
bility of the environment. According to a widely accepted 
point of view, it is the interplay of phytoplankton and 
zooplankton, interactions and transport that yields the 
whole variety of spatio-temporal plankton structures, in 
particular the phenomenon of plankton patchiness 
(Fasham 1978; Okubo 1980). Mathematical modelling 
requires the use of reaction-diffusion and perhaps advec-
tion equations. A good introduction to the latter field is 
provided by Holmes et al (1994). 

Since the classic paper by Turing (1952) on the role of 
nonequilibrium reaction-diffusion patterns in biomorpho-
genesis, dissipative mechanisms of spontaneous spatial 
and spatio-temporal pattern formation in a homogeneous 
environment have been of continuing interest in theoretical 
biology and ecology. Turing showed that the nonlinear 
interaction of at least two agent with considerably different 
diffusion coefficients can give rise to spatial structure. 
Segel and Jackson (1972) were the first to apply Turing’s 
idea to a problem in population dynamics: the dissipative 
instability in the prey–predator interaction of phytoplankton  
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and herbivorous copepods with higher herbivore  
motility. Levin and Segel (1976) suggested this scenario 
of spatial pattern formation for a possible origin of plank-
tonic patchiness. Recently, local bistability, predator–prey 
limit-cycle oscillations, plankton front propagation and 
the generation and drift of planktonic Turing patches were 
found in a minimal phytoplankton–zooplankton inter-
action model (Malchow 1993, 1994) that was originally 
formulated by Scheffer (1991a), accounting for the effects 
of nutrients and planktivorous fish on alternative local 
equilibria of the plankton community. 

Kierstead and Slobodkin (1953) and also Skellam 
(1951) were perhaps the first to think of the critical size 
problem for plankton patches, presenting what is known 
as the KISS model with the coupling of exponential 
growth and diffusion of a single population. Of course, 
their patches are unstable because this coupling leads to 
an explosive spatial spread of the initial patch of species 
with, surprisingly, the same diffusive front speed as the 
asymptotic speed of a logistically growing population 
(Luther 1906; Fisher 1937; Kolmogorov et al 1937). 

Populations with an Allee effect (Allee 1931; Allee  
et al 1949), i.e. when the existence of a minimum viable 
number of species of a population yields two stable popu-
lation states: extinction and survival at its carrying capa-
city, show a spatial critical size as well (Schlögl 1972; 
Nitzan et al 1974; Ebeling and Schimansky-Geier 1980; 
Malchow and Schimansky-Geier 1985; Lewis and Kareiva 
1993; Petrovskii 1994). Population patches greater than 
the critical size will survive, the others will go extinct. 
However, bistability and the emergence of a critical spa-
tial size do not necessarily require an Allee effect. Logis-
tically growing prey with a parameterized predator of type 
II and type III functional response can exhibit two stable 
states and related hysteresis loops (Ludwig et al 1978; 
Wissel 1989). 

The consideration of dynamic predation leads to the 
full spectrum of spatial and spatio-temporal patterns like 
regular and irregular oscillations, propagating fronts,  
target patterns and spiral waves, pulses as well as sta-
tionary spatial patterns. Many of these structures were 
first known from oscillating chemical reactions (Field and 
Burger 1985), but have never been observed in natural 
plankton populations. However, spirals have been seen in 
the ocean as rotary motions of plankton patches on a 
kilometre scale (Wyatt 1973). Furthermore, they have 
been found important in parasitoid–host systems (Boer-
lijst et al 1993). For other motile microorganisms, sta-
tionary structures and traveling waves like targets or 
spirals have been found in various bacteria and in the  
cellular slime mould Dictyostelium discoideum (Platt 
1961; Adler 1966; Adler and Templeton 1967; Gerisch 
1968, 1971; Keller and Segel 1970, 1971a, b; Segel and 
Stoeckly 1972; Nanjundiah 1973, 1985, 1998; Segel  

1977; Newell 1983; Alt and Hoffman 1990; Ivanitsky  
et al 1991, 1994; Medvinsky et al 1991, 1993a, b; 
1994a, b; Siegert and Weijer 1991; Steinbock et al 1991; 
Reshetilov et al 1992; Vasiev et al 1994; Höfer et al 
1995). These cells are chemotactic species, i.e. they move 
actively up the gradient of a chemical attractant. Chemotaxis 
is a kind of density-dependent cross-diffusion and it is an 
interesting open question whether there is prey taxis in 
plankton or not. 

An important point is that allowing for spatial dimen-
sions of the plankton community functioning provides 
also new routes to chaotic dynamics. The emergence of 
diffusion-induced spatio-temporal chaos has been found 
by Pascual (1993) along a linear nutrient gradient. Chaotic 
oscillations behind propagating diffusion fronts are found 
in a prey–predator model (Sherratt et al 1995, 1997); a 
similar phenomenon is observed in a mathematically simi-
lar model of chemical reactor (Merkin et al 1996; David-
son 1998). Recently, it has been shown that the appearance 
of chaotic spatio-temporal oscillations in a prey–predator 
system is a somewhat more general phenomenon and must 
not be attributed to front propagation or to inhomogeneity 
of environmental parameters (Petrovskii and Malchow 
1999, 2000b). 

Conditions for the emergence of three-dimensional  
spatial and spatio-temporal patterns after differential-flow-
induced instabilities (Rovinsky and Menzinger 1992) of 
spatially uniform populations were derived by Malchow 
(1996, 1998) and illustrated by patterns in Scheffer’s 
model. Instabilities of the spatially uniform distribution 
can appear if phytoplankton and zooplankton move with 
different velocities but regardless of which one is faster. 
This mechanism of generating patchy patterns is more 
general than the Turing mechanism which depends on 
strong conditions on the diffusion coefficients; thus, one 
can expect a wide range of its applications in population 
dynamics. 

Thus, the dynamics of the plankton communities, 
particularly, processes of pattern formation, have been 
under intensive investigations during the last decades. As 
a result, considerable progress in understanding the 
principal features of plankton system functioning has been 
achieved. Still, many mechanisms of the spatio-temporal 
variability of natural plankton populations are not known 
yet. Pronounced physical patterns like thermoclines, up-
welling, fronts and eddies often set the frame for the bio-
logical processes (see Medvinsky et al 2001 for a more 
detailed account). However, under conditions of relative 
physical uniformity, the temporal and spatio-temporal 
variability can be a consequence of the coupled nonlinear 
biological and physico-chemical dynamics (Levin and  
Segel 1976; Steele and Henderson 1992a, b). Daly and  
Smith (1993) concluded that biological processes may be  
more important at smaller scales where behaviour such as  
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vertical migration and predation may control the plankton  
production, whereas physical processes may be more  
important at larger scales in structuring biological commu-
nities. O’Brien and Wroblewski (1973) introduced a dimen-
sionless parameter containing the characteristic water  
speed and the maximum specific biological growth rate, to  
distinguish parameter regions of biological and physical  
dominance (Wroblewski et al 1975; Wroblewski and  
O’Brien 1976). 

Physical and biological processes may differ signifi-
cantly not only in spatial but also in temporal scale. Parti-
cularly, the effect of external hydrodynamical forcing on 
the appearance and stability of nonequilibrium spatio-
temporal patterns has been studied in Scheffer’s model 
(Malchow and Shigesada 1994), making use of the separa-
tion of the different time scales of biological and physical 
processes. A channel under tidal forcing served as a hydro-
dynamical model system with a relatively high detention 
time of matter. Examples were provided on different time 
scales: the simple physical transport and deformation of a 
spatially nonuniform initial plankton distribution as well 
as the biologically determined formation of a localized 
spatial maximum of phytoplankton biomass. 

Plankton pattern formation is essentially dependent on 
the interference of various physical (light, temperature, 
hydrodynamics) and biological (nutrient supply, preda-
tion) factors. (Platt 1972; Denmann 1976; Fasham 1978). 
In nature, it has been observed that the direction of  
motion of plankton patches does not always coincide with 
the direction of the water flow (Wyatt 1971, 1973), and as 
the spatial scale increases above approximately 100 meters, 
phytoplankton behaves successively less like a simple 
passive quantity distributed by turbulence (Nakata and 
Ishikawa 1975; Powell et al 1975). Similarly, the spatial 
variability of zooplankton abundance differs essentially 
from the environmental variability on scales less than a few 
dozen kilometres (Weber et al 1986). This indicates that 
biological factors play an essential role in the emergence 
of plankton patchiness (Steele and Henderson 1981). The 
question arises: may biological factors, such as predation-
prey growth and interactions, be a cause of plankton pat-
tern formation without any hydrodynamic forcing? 

In the present work, we apply conceptual few-species 
models to demonstrate that prey-predation interactions 
can give rise to complex spatio-temporal dynamics of 
both plankton and plankton-fish communities. 

2. Complex patterns in a simple minimal model of 
plankton dynamics 

2.1 Mathematical model 

In this section, the spatio-temporal dynamics of an aquatic 
community is considered in terms of a two-species prey–

predator (i.e. phytoplankton–zooplankton) system. We 
show that the formation of patchy spatial distribution of 
species can be described by this simple model. 

According to a widely accepted approach (Murray 
1989; Levin et al 1993), the functioning of a prey–
predator community can be described by the following 
reaction-diffusion equations: 
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t

u
+∆=

∂
∂

 (1) 

 ).,( 
 

vugvD
t

v
+∆=

∂
∂

 (2) 

Here, u(r, t) and v(r, t) are the abundance of prey and 
predator, respectively, r is the position, t is the time and D 
is the diffusion coefficient, ∆  is the Laplace operator. We 
assume that the diffusivities are equal for both the species, 
this is the usual case in natural plankton communities 
where the mixing is mainly caused by marine turbulence. 
The form of the functions f(u, v) and g(u, v) is determined 
by local biological processes in the community and, for 
biological reasons, can be described in the following way: 
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The function P(u) describes the local growth and natu-
ral mortality of the prey whereas E(u, v) describes trophi-
cal interaction between the species, i.e. predation. The 
term µ  is the mortality rate and k* is the coefficient of 
food utilization. 

The particular choice of the functions P(u) and E(u, v) 
in eqs (1)–(2) can be different, depending on the type of 
the prey population and on the type of functional response 
of the predator. Allowing for the results of field and labo-
ratory observations on plankton system functioning (Fasham 
1978; Raymont 1980), we assume that the local growth of 
the prey is logistic and the predator shows a Holling type 
II functional response (Holling 1959, 1978). Then, having 
chosen the simplest mathematical expressions for P(u) 
and E(u, v) (Murray 1989) we arrive at the following 
equations: 
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where α, b, H and γ  are certain constants, α stands for 
the maximum growth rate of the prey, b is the carrying 
capacity for the prey population, H is the half-saturation 
abundance of prey. Let us note here that in such a sche-
matic, few-species model (1)–(2) it hardly makes sense to 
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look for a more detailed parameterization. Let us also 
note that all the variables and parameters in eqs (3), (4) 
are non-negative due to their physical or biological sense. 
Thus, under the phase space of the system (3)–(4) we will 
actually mean the domain ( 0 ,0 ≥≥ vu ). 

The next step is to introduce dimensionless variables. 
Considering 

2/1)/(~, ~), /(~,/~ Dttbvvbuu αααγ rr ====  (5) 

and new dimensionless parameters h = H/b, m = µ/α and 
k = k*γ /α, from (3)–(4) we arrive at the following equa-
tions containing only dimensionless quantities: 

 ,)1( v
hu

u
uuu

t

u

+
−−+∆=

∂
∂

 (6) 

 .mvv
hu

u
kv

t

v
−

+
+∆=

∂
∂

 (7) 

 (tildes are omitted here and farther on). 
 
Before proceeding to the study of spatio-temporal pat-

tern formation, it seems reasonable to consider first the 
local dynamics of the system, i.e. the properties of eqs 
(6)–(7) without diffusion terms. One finds by linear stabi-
lity analysis that the system 
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possesses three stationary states: (0, 0), total extinction; 
(1, 0), extinction of predator; (u*, v*), coexistence of prey 
and predator, where 
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where r = m/k. It is readily seen that for all non-negative 
values of k, m and h, (0, 0) is a saddle-point. The station-
ary point (1, 0) is a saddle-point if the nontrivial point 
(u*, v*) lies in the biologically meaningful region u > 0, 
v > 0, or a stable node otherwise. The stationary point 
(u*, v*) can be of any type. 

Let us note here that the coexistence state (u*, v*) 
moves to the biologically meaningful region u > 0, v > 0 
when 
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and becomes unstable when the parameter value 
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In the latter case, the steady state is surrounded by  
a stable limit cycle and the kinetic of the system is  
oscillatory. 

We consider the following zero-flux boundary con-
ditions:  
 
 
 
(in a two-dimensional case, it means that derivatives along 
the direction perpendicular to the boundary of the domain 
must be equal to zero). This type of boundary condition is 
typical for modelling the dynamics of spatially-bounded 
aquatic ecosystems (Scheffer 1998). However, we want to 
mention that the principal result obtained in this section 
(the formation of irregular spatial patterns) stays qualita-
tively the same for periodical boundary conditions which 
are also often used for ecological modelling, see § 3. 

Eqs (6)–(7) are solved numerically by the semi-implicit 
finite-difference method. The steps ∆ x and ∆ t of the  
numerical grid are chosen sufficiently small so that the 
results do not depend on the value of the steps. Besides, 
the results of the calculations are tested by their compa-
rison with known analytical predictions (Fisher 1937; 
Dunbar 1986; Murray 1989). 

These results provide helpful information to choose the 
parameter value for numerical simulations of the full 
problem (6)–(7). In case of existence of a stable stationary 
point in the phase space of the system [i.e. when condition 
(10) is held and condition (11) is broken], the dynamics of 
the system is typically reduced to the relaxation to the 
stable spatially homogeneous state (u*, v*). The details of 
the process depend on the type of the initial conditions, 
e.g. for a finite initial distribution of species the relaxation 
usually takes place after propagation of diffusive fronts 
(Dunbar 1986; Murray 1989; Petrovskii et al 1998;  
Petrovskii and Malchow 2000a). Since here we are more 
concerned with the formation of transient spatio-temporal 
patterns, it is the parameter values satisfying condition 
(11) that are of primary interest (Koppel and Howard 
1973; Sherratt et al 1995; Petrovskii and Malchow 1999). 
 

2.2 1D computer simulations 

The spatio-temporal dynamics of a diffusion-reaction sys-
tem depends to a large extent on the choice of initial con-
ditions. In a real community, the details of the initial 
spatial distribution of the species can be caused by spe-
cific reasons. The simplest form of the allocated initial 
distribution would be spatially homogeneous initial condi-
tions. However, in this case the distribution of the species 
stays homogeneous for any time and no spatial pattern can 
emerge. To get a non-trivial spatio-temporal dynamics, 
one has to perturb the homogeneous distribution. 
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In this subsection we focus on the 1D dynamics of the 
system (6)–(7). A few different forms of the disturbed 
initial conditions will be considered. We begin with the 
constant-gradient distribution: 

*)0,( uxu =  (12) 

δεφ ++== xvxxv  )()0,( *1 , (13) 

where ε  and δ  are certain parameters. 
The results of our computer simulations show that  

the type of the system dynamics is determined by the  
values ε  and δ . In case ε  is small, the initial conditions 
(12)–(13) evolve to a smooth heterogeneous spatial dis- 
tribution of species (Petrovskii and Malchow 1999). The 
spatial distributions gradually vary in time, the local  
temporal behaviour of the dynamical variables u and v 
follows the limit cycle of the homogeneous system. This 
regime is not self-contained, and the smooth spatial  
pattern arising in this case slowly relaxates to the spatially 
homogeneous distribution of species (Petrovskii and  
Malchow 2000b). 

However, for another set of parameters (e.g. if the value 
of the gradient exceeds a certain critical value, crεε ≥  
where crε  depends on δ ), the features of the species spa-
tial distribution become essentially different (Petrovskii 
and Malchow 1999). Figure 1 shows the spatial distribu-
tion at the moment t = 640 and t = 2640 calculated for 
k = 2, r = 0⋅4, h = 0⋅3, ε = 10–6 and δ = – 1⋅5 × 10–3. In 
this case, the initial distribution (12)–(13) leads to the 
formation of strongly irregular sharp transient patterns 

inside a sub-domain of the system (figure 1a). The size of 
the region occupied by this pattern steadily grows with 
time and finally irregular spatio-temporal oscillations pre-
vail over the whole domain (figure 1b). An important  
note is that this regime is persistent. Long-time numerical 
simulations show that, after irregular spatio-temporal osci-
llations occupy the whole domain, the dynamics of the 
system does not undergo any farther changes. 

Also the temporal behaviour of the concentrations u 
and v becomes completely different. Figure 2 exhibits the 
local phase plane of the system obtained in a fixed point 
x = 480 inside the region invaded by the irregular spatio-
temporal oscillations. Instead of following the limit cycle 
as it happens in case of smooth pattern formation, the tra-
jectory now fills nearly the whole domain inside the limit 
cycle. Below we will show that this regime of the system 
dynamics corresponds to spatio-temporal chaos (Petrov-
skii and Malchow 1999). 

A remarkable property of the system dynamics is that, 
until the irregular pattern spreads over the whole domain, 
there exist distinct boundaries at every moment separating 
the regions with different dynamical regimes, i.e. the forma-
tion of sharp irregular patterns and smooth regular pat-
terns. Our numerical results show that these interfaces 
propagate with an approximately constant speed in oppo-
site directions, so that the size of the region with chaotic 
dynamics is always growing. The phenomenon is essen-
tially spatio-temporal: the chaos prevails as a result of the 
displacement of the regular regime by the chaotic regime. 
The dynamics of the system looks similar to a phase tran-
sition between regular and chaotic phases. 

Figure 1. Spatial distribution of the populations (solid lines for prey, dashed for predator) calculated for the case when 
the regular phase is gradually displaced, leading to the onset of a chaotic phase. (a) t = 640 and (b) t = 2640. 
 

(b) (a) 
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Since the spatial distribution of the species abundance 

is essentially inhomogeneous, it seems that more informa-
tion can be obtained from consideration of values spe-
cially designed to take into account both temporal dynamics 
and the spatial dimension of the system. The simplest  
example of such a value is given by the spatially averaged 
concentration of species (another examples will be con-
sidered below). Figure 3 shows a sketch of the phase 
plane (〈u〉, 〈v〉) drawn for the parameters k = 2⋅0, r = 
0⋅33, h = 0⋅43. While in case of the smooth pattern the 
trajectory (not shown in the sketch) slowly approaches the 
limit cycle (dashed curve), for the regime of sharp pattern 
the trajectory is retained in a close vicinity of the steady 
state 〈u〉 = u*, 〈v〉 = v*, filling the space inside a certain 
domain. The diameter of the domain is notably smaller 
than the diameter of the limit cycle. Thus it means that the 
amplitude of the temporal changes in the spatially averaged 
species abundance is much smaller in case of the forma-
tion of sharp chaotic pattern than in case of smooth regu-
lar pattern. 

We want to note that the two-phase dynamics of the 
system (6)–(7) described above should not be attributed to 
the specific choice of the initial conditions in the form 
(12)–(13). Particularly, for the following initial conditions 

  ,)0,( *uxu =  (14) 
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spatially homogeneous distribution (with the periodical 
temporal behaviour according the limit cycle) survives 
only for very small values of amplitude A and/or magni-
tude S of the perturbation, cf. Petrovskii and Malchow 
(2000b) for more details. For somewhat larger, but still 
small values of A and S, initial distribution (14)–(15) 
evolves to formation of sharp irregular spatio-temporal 
pattern. The embryo of the chaotic phase first appears in 
vicinity of the initial finite perturbation of the homogene-
ous steady state. The moving interface now separates the 
domain occupied by irregular spatio-temporal oscillations 
from the region of homogeneous spatial distribution, the 
speed of the interface in this case can be found analyti-
cally (Petrovskii and Malchow 2000b). 

Let us note that, if started with somewhat more com-
plex, e.g. non-monotonic initial conditions, the dynamics 
of the system can be even more complicated showing  
a phenomenon which may be called intermittency: the  
domains occupied by regular and chaotic phases alternate 
in space, cf. figure 4. As a particular example, we con-
sider the following form of the initial conditions: 

  ),)(( )0,( 21* xxxxuxu −−+= ε  (16) 

Figure 2. Phase plane of the system obtained in a fixed point 
inside the domain occupied by irregular spatio-temporal oscilla-
tions. 
 

Figure 3. Phase plane of spatially averaged densities of prey 
and predator calculated for the case of irregular dynamics of the 
system; parameters are given in the text. Dashed line shows the 
limit cycle of the spatially homogeneous system, short-dashed 
straight lines indicate the position of the steady state. 
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.)0,( *vxv =  (17) 

In this case, slightly disturbed initial conditions evolve 
to a complex spatial structure where two domains occu-
pied by sharp patterns are separated by regions with 
smooth patterns, cf. figure 4 showing a snapshot of the 
species distribution at t = 600 calculated for ε = 10–8, 
x1 = 1200, x2 = 2800, other parameters as in figure 1. As 
in the previous case, the size of the chaotic domains 
steadily grows so that finally they displace the regular 
phase and occupy the whole region. 

The results of our numerical experiments fulfilled for 
different types of initial conditions and different para-
meter values indicate that formation of sharp pattern typi-
cally takes place first in vicinity of a point/points xcr 
where u(xcr, 0) = u*, v(xcr, 0) = v*. In case the initial con-
ditions do not contain such a critical point, the factors 
determining the position of the embryos are not clear. 

The scenario of pattern formation described above  
appears to be essentially different from those already 
known for two-component reaction-diffusion systems (Turing 
1952; Segel and Jackson 1972; Rovinsky and Menzinger 
1992; Pascual 1993; Malchow and Shigesada 1994; Mal-
chow 1994; Sherratt et al 1995). Note that mathematical 
model (6)–(7) describing formation of the sharp irregular 
spatial structure is, in a certain sense, minimal because it 
does not contain commonly encountered assumptions and 
restraints, e.g. about different mobility of interacting spe-
cies or any type of environmental heterogeneity. In the 
rest of this section, we give an extensive consideration of 

this new mechanism of pattern formation. Firstly, we will 
produce clear evidence of the chaotic nature of the irregular 
spatio-temporal oscillations observed above. And secondly, 
to estimate applicability of this mechanism to the dyna-
mics of ecological communities, the extension of the results 
on the case of two spatial dimensions will be made. 
 

2.3 Spatio-temporal chaos 

In this subsection we show that the formation of sharp 
non-stationary patchy structure in the distribution of the 
species corresponds to spatio-temporal chaos. It should be 
noted that the term chaos has a specific meaning and a 
visible irregularity of the system behaviour, whatever 
complex it may be, does not necessary means chaotic  
dynamics. According to its definition, chaos means sensi-
tivity to the initial conditions when small variations of the 
initial distribution of species lead to large discrepancy 
between species distribution hereafter. Particularly, it means 
that the initial perturbation with a small amplitude )0(d  
grows with time as )exp()0()( tdtd λ≅  where λ > 0 is the 
dominant Lyapunov exponent (Kantz and Schreiber 1997). 
This exponential growth has been proved to be equivalent 
to some other properties of the system dynamics, e.g. to a 
specific flat form of the power spectra for the dynamical 
variables of the system and to exponential decreasing of 
the autocorrelation function (Nayfeh and Balachandran 
1995). Thus, to reveal chaos in the dynamics of the sys-
tem a variety of methods can be used. 

We want to note that the concept of chaos appeared 
originally in connection with the temporal dynamics of a 
spatially homogeneous system. Meanwhile, accounting for 
the spatial dimensions of the system can make its dyna-
mics much more complex and provide a possibility for 
chaos to arise in those cases where it would be impossible 
otherwise. Particularly, the appearance of chaos in the 
two-species system is a crucial consequence of the forma-
tion of spatial patterns. The phenomenon is essentially 
spatio-temporal; thus, to distinguish it from a purely tem-
poral chaotic dynamics of a homogeneous system, the 
term spatio-temporal chaos (Pande and Pandit 2000) seems 
to be more adequate. 

In order to show that the formation of sharp transient 
patterns corresponds to chaotic dynamics, we test sensiti-
vity of the species distribution to variations of the initial 
conditions. Figures 5–8 present the results of our com-
puter investigation of the problem. Firstly, eqs (6)–(7) are 
solved for the parameter values corresponding to oscilla-
tory local kinetics of the system, cf. (11), to provide the 
formation of sharp irregular patterns. The initial condi-
tions are taken in the form (12)–(13). Then, eqs (6)–(7) 
have been solved for the same but slightly perturbed  
initial conditions, u(x, 0) = u*, v(x, 0) = 1 φ (x) + ,v∆   

Figure 4. An intermittent spatial structure appearing from 
nonmonotonic initial conditions (16)–(17); parameters are given 
in the text. Solid line for prey and dashed line for predator. 
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the perturbation v∆  being chosen in the following  
form: 

 

 ,for  
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After that, the spatial distributions of species calculated 
in each case are compared. Figure 5 shows the prey abun-
dance (the comparison made for the predator leads to 
similar results) obtained at t = 600 and t = 800 for  
perturbed (with x0 = 150, Lpert = 5 and εpert = 0⋅01) and 
unperturbed initial conditions (12)–(13) for parameter 
values k = 2⋅0, r = 0⋅4, h = 0⋅3, ε = 2 × 10–4, δ = – 3 × 10–2, 
solid and dashed lines correspond to the solutions obtained 
for unperturbed and perturbed initial conditions, respec-
tively. Thus, until t ≈ 600 there is a very small diffe- 
rence between the solutions. However, for t > 600 the 
visible discrepancy begins growing promptly and already 
for t = 800 the difference between the solutions is of the 
same order as the solutions themselves. We want to men-
tion that qualitatively similar behaviour is also observed 
for other values of Lpert and ,pertε  and for other values of 
the parameters corresponding to the formation of irregular 
structures. 

Thus, the sensitivity of the species density to small 
variations of the initial conditions is demonstrated, based 
on the discrepancy between perturbed upert(x, t) and unper-

turbed uunpt(x,t) solutions of eqs (6)–(7). To make it more 
quantitative, figure 6 shows the absolute value b(t) of  
the local difference between the prey density in a fixed 
point 150=x obtained for the two cases, i.e. 

b(t) =  .),(),( txutxu unptpert −  (19) 

The behaviour of b(t) is in agreement with the results 
shown in figure 5: the difference between the solutions is 
negligible for t < 500 and starts growing fast for larger 
times. 

The results presented in figure 6 would be probably  
exhaustive if obtained for a system without a spatial struc-
ture. This is not so in our case. The existence of the 
prominent spatial patterns makes it somewhat doubtful 
whether the dynamics of the system can be adequately 
represented by the results obtained in a single point .x  To 
make it more convincing, we also calculate the distance 
d(t) between the perturbed and unperturbed solutions  
allowing for the spatial dimension of the system. Specifi-
cally, the difference between the solution is now deter-
mined not in a fixed point but as a maximum discrepancy 
found throughout the domain, i.e. 

d(t) = max ,0 ,),(),( Lxtxutxu unptpert ≤≤−  (20) 

where L is the overall length of the domain. The values of 
d calculated for different moments of time are shown in 
figure 7 (parameters are the same as above). Thus, the 
behaviour of the distance d(t) also confirms sensitivity of 

Figure 5. The spatial distribution of the prey abundance at (a) t = 600 and (b) t = 800 calculated for perturbed (dashed line) and 
unperturbed (solid line) initial conditions. 
 

(b) (a) 
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the species spatial distribution to small variation of the 
initial conditions. 

Another way to take into account the spatial dimension 
of the system is to consider the difference between the 
spatially averaged solutions. Note that, generally speak-
ing, this approach is not equivalent to the one based on 
(20). Indeed, one can imagine a situation when two spatial 
distributions differ significantly only in a few points but 
appear quite close in terms of averaged values. To break 
these last doubts, we use the following expression for the 
distance-in-average: 

n(t) = |〈upert〉(t) – 〈uunpt〉 (t)|, (21) 

where 

 ∫=〉〈
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dxtxu
L

tu
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The results of the calculations of n(t) shown in figure 8 
(parameters are the same as in figures 5–7) are in good 
agreement with the results obtained in course other  
approaches. 

Thus, the results shown in figures 5–8 clearly indicate 
that small variations of the initial conditions lead, after a 
certain time T, to the formation of completely different 
spatial distribution of species. This result is robust with 
respect to the way of quantification of the difference  
between the perturbed and unperturbed solutions, cf. eqs 
(19)–(21). To quantify the rate of the exponential growth 
of the difference )(td  between the solutions becomes 
significant is .600≅T  This leads to an estimate for the 
dominant Lyapunov exponent as ≅= T/1λ 0⋅001. Our 

numerical experiments show that this value stays app-
roximately the same for the values of initial perturbations 
at least in the range from =pertε 0⋅005 to =pertε 0⋅001 
[see eq. (18)]. The observed sensitivity of the solutions to 
small variations of the initial conditions provides a con-
clusive argument for the existence of chaos (Nayfeh and 
Balachandran 1995; Kaplan and Glass 1995; Katz and 
Schreiber 1997). 

Another way to demonstrate chaotic nature of the irregu-
lar spatio-temporal oscillations of the species abundance 
is to calculate the autocorrelation functions. The state of a 
prey–predator community is naturally described by the 
two dynamical variables u and v, i.e. the densities of prey 
and predator, respectively. Thus, for a general case, one 
has to consider two autocorrelation functions as well as 
the cross-correlations. Here, we restrict ourselves to the 
results obtained for the prey abundance, the autocorrela-
tion function for predator shows qualitatively similar  
behaviour. 

It should be noted that an immediate application of the 
standard definition leads to certain problems. According 
to the usual approach, in case a dynamical variableψ is a 
function of a variable τ which may have the meaning of 
time or position or anything else, the autocorrelation func-
tion is defined by the following expression: 
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1

lim) ( ττψξτψξ  (22) 

 
In the problem under consideration, the prey density 

depends on two variables, position and time. Thus, trying 

Figure 6. The local difference b(t) between perturbed and 
unperturbed solutions calculated at a fixed point x = 150.  
 

Figure 7. The distance d(t) between perturbed and unper-
turbed solutions calculated according to eq. (20). 
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to apply the definition (22) to characterize the spatial 
structure of the system, we arrive at 
 

∫ +=
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Eq. (23) has a few evident drawbacks. First, the auto-
correlation function calculated according to (23) depends 
not only on the distanceξ  but also on time. The situation 
when the properties of ,F  considered as a function  
of ,ξ  are explicitly time-dependent appears rather exotic 
and makes the interpretation of the results highly difficult. 
On the other hand, since the problem is essentially tran-
sient it seems reasonable that a proper definition of the 
autocorrelation function should take into account both 
spatial and temporal behaviour of the system. Another 
problem is that, in order to obtain reliable results during 
computer simulations, the value of Z in eq. (23) must be 
chosen sufficiently large. Practically, it means that the 
numerical grid must consist of, at least, a few dozen thou-
sands of nodes which is hardly possible. 

To overcome these difficulties, we consider a modified 
definition of the autocorrelation function where the avera-
ging over space is changed to the averaging over time: 

∫ +=
∞→
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dttxutxu
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Note that eq. (24) includes the usual definition as a par-
ticle case if the system exhibits ergodic behaviour. Let us 

also mention here that, although the value of K formally 
depends on the parameter x0, the results of the numerical 
simulations implemented for different values of x0 do not 
show any dependence on x0. 

The autocorrelation function K(ξ ) calculated according 
to (24) is shown in figure 9 (for parameter values k = 2⋅0, 
r = 0⋅2, H = 0⋅3, x0 = 100, averaging is done over the 
time interval from t = 4000 to t = 12000), the solid line 
corresponds to the case of irregular dynamics (formation 
of sharp patterns), the dashed line corresponds to the 
regular dynamics (smooth patterns). 

Thus, one can see that, in case of regular dynamics, the 
spatio-temporal behaviour of the system is highly corre-
lated over the whole domain. Moreover, since the regime 
of smooth patterns is a process of slow relaxation to the 
homogeneous spatial distribution, the autocorrelation func-
tion gradually changes with time so that the correlativity 
of the temporal behaviour between different point increases. 
In the infinite time limit temporal oscillations throughout 
the system become synchronized and K(ξ) .1≡  

On the contrary, the behaviour of the autocorrelation 
function for the case of sharp pattern shown in figure 9 is 
typical for chaotic dynamics (Nayfeh and Balachandran 
1995). It should be mentioned here that the irregular  
oscillations of finite (non-zero) amplitude in K(ξ) is the 
consequence of the finiteness of the averaging interval T; 
the results of our numerical simulations show that their 
amplitude tends to zero as T is increasing. Since our 
modified definition (24) of the autocorrelation function 

Figure 8. The distance n(t) between perturbed and unper-
turbed solutions calculated on the basis of spatially averaged 
values, cf. eq. (21). 
 

Figure 9. Autocorrelation function K(ξ) calculated for the 
regimes of sharp patterns (solid line) and smooth patterns 
(dashed line). 
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takes into account both spatial and temporal aspects, the 
regime of the system dynamics corresponding to the  
formation of sharp patterns can be classified as spatio-
temporal chaos; this is in agreement with the comments 
made at the beginning of the subsection. This conclusion 
is also in agreement with recent results of Petrovskii and 
Malchow (1999) where spatio-temporal chaos in a prey–
predator system is described in terms of the temporal  
behaviour of spatially averaged densities. 
 

2.4 Pattern formation in 2D case 

Now we are concerned with the extension of the results 
above to the case of two spatial dimensions. In this case, 
eqs (6)–(7) take the following form: 
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In eqs (25)–(26) 0 < x < Lx, 0 < y < Ly. Eqs (25)–(26) 

describe the dynamics of an aquatic community in a hori-
zontal layer, vertical distribution of species inside the 
layer is assumed homogeneous. 

Eqs (25)–(26) are solved numerically. The choice of 
the length Lx and the width Ly of the domain may be dif-
ferent in different computer experiments; in the results 
shown below, Lx = 900, Ly = 300. At the domain bound-
ary, the zero-flux conditions are imposed. As above, the 
type of the system dynamics to a certain extent depends 
on the choice of the initial conditions. For a purely homo-
geneous initial distribution of species, the system stays 
homogeneous for every moment of time and no spatial 
pattern emerges. In case of only a very slightly perturbed 
initial conditions [the shape of perturbation can be differ-
ent, e.g. cf. eqs (12)–(13) and (14)–(15)] a smooth spatial 
pattern arises which is not persistent and gradually evolves 
to the homogeneous species distribution. However, for 
somewhat stronger disturbed initial conditions, the system 
evolves to formation of sharp irregular spatial patterns 
which is persistent in time. 

Here we present the results of two computer experi-
ments differing in the form of the initial conditions. In the 
first case, the initial distribution of species provides a 2D 
generalization of eqs (16)–(17). Specifically, 

 
 u(x, y, 0) = u* – ε1(x – 0⋅1y – 225)(x – 0⋅1y – 675), 

(27) 
 

 v(x, y, 0) = v*  – ε2(x – 450) – ε3( y – 150)  (28) 

where ε1 = 2 × 10–1, ε2 = 3 × 10–3 and ε3 = 1⋅2 × 10–4 (note 
that the initial conditions are deliberately chosen not to  
be symmetrical in order to make more explicit possible 
impact of the corners of the domain). The values of para-
meters in eqs (25)–(26) are chosen as k = 2⋅0, r = 0⋅3, 
h = 0⋅4. Snapshots of the species spatial distribution aris-
ing from (27)–(28) are shown in figure 10 for t = 0, 
t = 150, t = 200, t = 300, t = 400, and t = 1000. Since 
both species exhibit qualitatively similar behaviour except 
for early stages of the process when the influence of the 
initial conditions is essential, only the prey (phytoplank-
ton) abundance is shown. 

Thus, for a 2D system (25)–(26), the formation of 
irregular patchy structure (cf. figure 10f) can be preceded 
by the evolution of a regular spiral spatial pattern. Note that 
the appearance of the spirals is not induced by the initial 
conditions. The centre of each spiral is situated at a criti-
cal point, i.e. at the point (xcr, ycr) where u(xcr, ycr) = u*, 
v(xcr, ycr) = v* (cf. with the results obtained for the 1D 
case). It is readily seen that distribution (27)–(28) con-
tains exactly two such points, for another initial condi-
tions the number of spirals can be different. After they are 
formed (figure 10b), the spirals slightly grow in size  
during a certain time, their spatial structure becoming 
more distinct (figure 10b, c). The destruction of the spi-
rals begins in their centres (figure 10d). Once appearing, 
the embryos of the patchy structure steadily grow (figure 
10d, e), and finally an irregular patchy spatial pattern pre-
vails over the whole domain. 

In the second case, the initial conditions describe a 
phytoplankton (prey) patch placed into a domain with a 
constant-gradient zooplankton (predator) distribution: 

 
 
   u(x, y, 0) = u* –ε1(x – 180)(x – 720) – ε2(y – 90)(y – 210), 

(29) 
 

v(x, y, 0) = v* – ε3(x – 450) – ε4( y – 135)  (30) 
 
 
where ε1 = 2 × 10–7, ε2 = 6 × 10–7, ε3 = 3 × 10–5, ε4 = 6 × 10–5. 
Figure 11 shows the snapshots of phytoplankton spatial 
distribution obtained at t = 0, t = 120, t = 160, t = 300, 
t = 400 and t = 1200 for parameter values k = 2⋅0, 
r = 0⋅3, h = 0⋅4. Although for these initial conditions the 
dynamics of the system preceding the formation of patchy 
spatial structure is somewhat less regular, it seems to fol-
low a similar scenario. First, again, the spirals appear with 
their centres being disposed in vicinity of critical points 
(figure 11b, c), the form of the spirals is not so perfect as 
it was in the previous case. The destruction of the spirals 
leads to the formation of two growing embryos of the 
patchy spatial pattern (figure 11d, e), and finally to the 
formation of irregular patchy species distribution in the 
whole domain. 
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Figure 10. Spatial distribution of prey (phytoplankton) for (a) t = 0, (b) t = 150, 
(c) t = 200, (d) t = 300, (e) t = 400, and (f) t = 1000, parameters are given in the text. 
Irregular patchy structure arises as a result of destruction of spirals. 
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Figure 11. Spatial distribution of prey (phytoplankton) for (a) t = 0, (b) t = 120, 
(c) t = 160, (d) t = 300, (e) t = 400, and (f) t = 1200, parameters are given in the text. 
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 We want to note that the formation of a spiral structure 
in the spatial distribution of plankton may shed a new 
light on some well-known problems. The existence of a 
dipole-like structure in the plankton distribution in the 
ocean is widely known, usually it is associated with so-
called mushroom-like structure of the field of advective 
currents (Fedorov and Ginzburg 1988). Here we have 
shown that a structure of that type may appear due to  
trophical prey–predator interactions in the aquatic com-
munity and must not be necessarily associated with the 
ocean hydrodynamics. 

Thus we see that, although at intermediate time the  
dynamics of the system can be quite regular (figure 
10b, c), for larger times the evolution of the species spa-
tial distribution leads to the formation of irregular patchy 
structure (figures 10f and 11f ). This spatial pattern is in 
agreement with the data of field observations on the  
functioning of plankton systems (Denmann 1976; Weber  
et al 1986; Green et al 1992; Levin et al 1993). To  
estimate the relevance of the pattern formation mecha- 
nism considered here to the patchy plankton spatial distri-
bution in marine environments, the question about the 
scale of the arising spatial structures is to be answered. 
Analysis of the results shown in figures 10f and 11f, as 
well as the behaviour of the autocorrelation function  
K(ξ) (figure 9), indicates that there is a characteristic  
intrinsic length of the pattern, its value being esti- 
mated between 10 and 25 in dimensionless units. Refe-
rring to eq. (5), the magnitude of this value in dimensional 
units is determined by the maximum phytoplankton 
growth rate and the turbulent diffusivity. The value  
of the maximum growth rate α depends on the season,  
and for the period of blooming can be estimated as 
4 × 10–5 to 10–5 (corresponding to the time of phyto- 
plankton biomass doubling as between 6 and 48 h).  
The situation with turbulent diffusivity is somewhat  
more complicated. For open-sea regions the intensity of 
turbulent mixing usually shows clear dependence on the 
scale of the phenomenon (Ozmidov 1968; Okubo 1971, 
1980). Particularly, for the diffusion of a single plankton 
patch it means that the diffusivity may grow with time 
(Petrovskii 1999). However, this property of the turbulent 
mixing is much less manifested in coastal regions, e.g. 
bights, harbours, etc. In this case of so-called small-scale 
turbulence, the value of the turbulent diffusivity can be 
estimated as D = 103 cm2 s–1 (Ozmidov 1968, 1998). 
Thus, taking the estimates for D and α together with eq. 
(5), we obtain that the dimensionless unit length corres-
ponds to approximately 50 to 100 meters in original dimen-
sional units. This gives the value of the intrinsic length of 
the spatial patterns on the order of 1 km which is consis-
tent with the scale of plankton patterns obtained in field 
observations (Fasham 1978; Steele 1978; Abbott  
1993). 

3. The interplay between plankton spatio-temporal 
pattern formation and planktivorous  

fish school cruising 

3.1 Introduction 

In the previous section, the efficiency of applications of a 
classical two-species continuous model to describe pattern 
formation in a plankton community was demonstrated. 
However, the continuous approach based on ordinary or 
partial differential equations often fails to account for the 
individual intentional behaviour of modelled species in 
their environment as well as their mutual adaptation. The 
elaboration of the concept of complex adaptive systems 
since Holland (1975) till today together with the deve-
lopment of individual-based modelling strategies have 
partly overcome this problem. Usually, several so-called 
agents behave according to a generally small number of 
defined rules which control growth, interactions and  
motion of the agents as well as the mutual interactions of 
the agents and their environment. This set of rules for 
process on the microscale can create temporal, spatial, 
spatio-temporal, or functional structures on the macro-
scale. 

In this section, we apply this concept to study the dyna-
mics of a coupled fish–plankton system. The fish will  
be considered localized in a school, or super-individual 
(Scheffer et al 1995), cruising and feeding according to 
defined rules. In such an approach, the spatio-temporal 
continuous dynamics of two interacting and dispersing 
populations (phytoplankton and zooplankton) and the rule-
based behaviour of a discrete agent (fish school) control 
each other in a hybrid model. A similar hybrid modell- 
ing technique has already been used by Savill and  
Hogeweg (1997) to describe morphogenetic process in 
cell tissues. 

The process of aggregation of individual fishes and the 
persistence of schools under environmental or social con-
straints has already been studied by many other authors 
(Radakov 1973; Cushing 1975; Steele 1977; Blake 1983; 
Okubo 1986; Semovski 1989; Grünbaum and Okubo 
1994; Huth and Wissel 1994; Reuter and Breckling 1994; 
Gueron et al 1996; Niwa 1996; Romey 1996; Flierl  
et al 1999; Stöcker 1999) and will not be considered  
here. 

Let us note that prey–predator interactions are the basic 
dynamics of any food chain. However, Goodwin (1967) 
has applied it as well to model the class struggle where 
the employment rate serves as the prey while the wage  
bill share acts as the predator (Lorenz 1993). Coupling  
of economic and ecological systems is well known,  
for example, as applied to fishery (Ruth and Hannon  
1997). 
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3.2 The model of a nutrient–plankton–fish  
coupled system 

3.2a Continuous plankton dynamics: We consider a 
four-component nutrient–phytoplankton–zooplankton fish 
model where at any location (X, Y) and time τ, the  
dynamics of phytoplankton P(X, Y, τ) and herbivorous  
zooplankton H(X, Y, τ) populations are given by the  
following reaction–diffusion equations: 
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The parameters R, K, M, and 1/A denote the intrinsic 

growth rate and carrying capacity of phytoplankton, the 
death rate and yield coefficient of phytoplankton to zoo-
plankton, respectively. The constants C1, C2 and C3 para-
meterize the saturating functional response, F is the fish 
predation rate on zooplankton. DP and DH are the diffu-
sion coefficients of phytoplankton and zooplankton, res-
pectively. ∆  is the two-dimensional Laplace operator. 
The dependence of the zooplankton grazing rate on phyto-
plankton is of type II, whereas the zooplankton predation 
by fish follows a sigmoidal functional response of type III 
as it has been supposed in the Scheffer (1991a) model. 

The local kinetics of the model, i.e. DP = DH = 0, has 
been investigated in detail (Steele and Henderson 1981; 
Scheffer 1991a). In the absence of zooplankton, phyto-
plankton would reach its carrying capacity K. Considering 
zooplankton at first as a non-dynamic predator, i.e. 
∂H/∂ô  = 0 in eq. (32), the possibility of 2 stable phyto-
plankton levels arises for intermediate values of zooplank-
ton densities, whereas high zooplankton densities lead to a 
single stable low phytoplankton level and vice versa.  
Dynamic zooplankton can induce the typical prey–
predator limit cycle oscillations and the addition of plank-
tivorous fish by the last kinetic term in eq. (32) restores 
the possibility of bistability. Without external or internal 
noise, the initial conditions determine which of the 2 sta-
ble states will be reached. Fluctuations which might be 
due to the natural noise or also ‘extreme’ events could in-
duce transitions between the stable states. 

The behaviour of the local model under seasonal forcing 
has been studied as well (Scheffer et al 1997; Steffen et al 
1997; Scheffer 1998). These seasonal forcings are due to 
the natural variability of temperature, light, and nutrient 
supply. The local prey–predator cycles can be driven to 
quasi-periodic and chaotic oscillations. Locally stable 
steady states simply oscillate with the frequency of the 
external forcing. 

Accounting for diffusion, diffusion-induced stationary 
patchy plankton distributions have been found which  
appeared to be stable even under weak seasonal forcing 
(Malchow 1993), however, such structures require differing 
diffusion coefficients (Turing 1952; Segel and Jackson 
1972). Moving patchy distributions for equal diffusivities 
can be found if the interference of growth, interactions, 
diffusion, and advection causes an instability of the uni-
form plankton distribution (Malchow 1996), or if certain 
parameters, e.g. the nutrient distribution, possess a spatial 
gradient. In the latter case, even diffusion-induced chaos 
might appear (Pascual 1993). 

Hydrodynamic forces and their spatio-temporal flow 
patterns often govern or set the frame for the structures of 
drifting and swimming matter. Hydrodynamic processes 
are usually much faster than the plankton biology; that 
allows a special mathematical separation technique (Mal-
chow and Shigesada 1994) which is beyond the scope of 
this paper. A physically relatively uniform period and area 
are considered in this chapter. 

For later convenience, model (31)–(32) is simplified by 
introducing dimensionless variables. Following Pascual 
(1993), dimensionless densities p = P/K and h = AH/K are 
defined. Space is scaled by a characteristic length L/k 
which is the total length L of the considered area divided 
by an integer scale factor k which models the scale of the 
expected patchy patterns. Time is scaled by a characte-
ristic value of the phytoplankton growth rate R0. Thus, 
x = kX/L, y = kY/L and t = τR0. Then, eqs (31)–(32)  
become 
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where the new parameters are r = R/R0, a = C1K/(C2R0), 
b = K/C2, m = M/R0, f = F/(C3R0), g = K/(C3A), dp = k2DP/ 
(L2R0), dh = k2DH /(L2R0). 

The results presented here are based on numerical 
simulations for a set of parameters (r = 2, a = 5, b = 5, 
m = 0⋅6, g = 2⋅5) chosen to obtain limit cycles at each 
point in the absence of diffusion under f = 0. In natural 
waters turbulent diffusion is often supposed to dominate 
plankton diffusion rates. Taking this into account we con-
sider both phytoplankton and zooplankton as passive con-
taminants of water turbulent motion (Malchow et al 2000; 
Medvinsky et al 2000; Tikhonov et al 2000; Tikhonova  
et al 2000). In this case, dp = dh = d. Using the relation-
ship between turbulent diffusivity and the scale of the 
phenomenon in the sea (Okubo 1971, 1980) one can show 
that with the characteristic growth rate R0 = 10–5 s–1 (or 
one division per day which is typical of phytoplankton 
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 growth) and the characteristic length L/k = 1 km (which is 
typical of plankton spatial patterns) d is about 5 × 10–12. 

For the numerical integration of eqs (33)–(34), we used 
a simple difference scheme. The 2D space was divided 
into a rectangular grid of 6464×  quadratic finite elements 
with unit size length. The time step was set equal to 0⋅01. 
Repetition of the integration with smaller step size 
showed that the numerical results did not change, ensuring 
the accuracy of the chosen approximation. Periodic 
boundary conditions were adopted in both spatial direc-
tions in order to consider fish–plankton interactions on 
larger scales. 

 
3.2b Discrete fish school dynamics: It is generally  
accepted that the predation rate of fish is a constant  
parameter of the plankton–fish interaction model (Sche-
ffer 1991a, b; Scheffer et al 1997). It means that fish is 
always homogeneously distributed in space. But it is well 
known that fish can form mobile schools. For such fish 
schools occupying spatially confined regions, f is not a 
constant but is a function of zooplankton density h, time t 
and space (x, y), i.e. in eq. (32), ).,,,( yxthff =  The 
function f describes plankton density dependent motion of 
the fish school towards favourable habitats. This motion 
can be simulated in different ways (Bocharov 1990; 
Radakov 1973). 

In this section, we suggest that the behaviour of fish 
schools might obey the rules introduced by Ebenhöh 
(1980). They are as follows: 
 
• A localized feeding fish school moves to the 

neighbouring region with the highest food concentra-
tion, only if the actual local zooplankton density is grazed 
down to or below a certain threshold value hth, result-
ing in a zooplankton density gradient to the surround-
ing higher than a defined threshold value δhth, but 

• not before some residence time thτ . 
 

The Ebenhöh rules correspond to observations of fish 
school movements in natural waters (Radakov 1973; 
Ebenhöh 1980; Fernö et al 1998; Misund et al 1998). 
However, in order to keep the rules as simple as possible, 
the fish schools act independently of other fishes and do 
not change their specific characteristics as size, speed  
and residence time. Model (33)–(34) with the function f  
describing the fish school movement following the Eben-
höh automata rules combines features of a cellular auto-
maton and of a model based on partial differential 
equations. 

The calculation of the fish movement was carried  
out according to the Ebenhöh rules. The fish predation 
rate )(n

ijf  is equal to a constant f0 if at time step nδ t the 
fish school is present at position (i, j) and is equal to zero 
otherwise. The relevant zooplankton gradients h∇

rr
 ξ  were 

numerically calculated according to 
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where sign denotes the signum function; sign(x) = + 1, 
x ≥ 0 and sign(x) = – 1, x < 0, sign(0) = 0. 

3.3 Plankton pattern formation resulting from  
fish school motion 

Figure 12 demonstrates phytoplankton and zooplankton 
patterns that emerge as a result of the fish school–plankton 
interplay. It is seen that the phytoplankton density is lower 
in the regions where zooplankton density is higher and 
vice versa. Many early observers have reported such  
an inverse relationship between phytoplankton and zoo-
plankton (cf., Fasham 1978). Obviously, this is due to 
consumption of phytoplankton by zooplankton. As a result, 
the penetration of phytoplankton into the regions occupied 
by zooplankton patches is blocked. 

One can see spiral waves formed by phytoplankton and 
zooplankton (figure 12). Two- and three-dimensional spiral 
waves emerge in active physical, chemical and biological 
media (Murray 1977; Winfree 1980, 1987; Krinsky et al 
1986; Grusa 1988). For example, they play an essential 
role in disturbances of the heart rhythm and in biological 
morphogenesis. In the ocean, they may be present as  
rotary motions of plankton patches on a kilometre scale 
(Wyatt 1973). 

The formation of a plankton spiral wave is shown in 
figure 13. It can be seen that the fish school is a trigger of 
this process. First, the fish school reaches the zooplankton 
patch (figure 13 at t = 450). The track made by this fish 
school oscillates with a phase shift relative to the sur-
rounding zooplankton density. Once the fish school has 
escaped from the zooplankton patch (figure 13 at t = 460), 
its track expands and forms a U-like structure (figure 13 
at t = 490). The edges of this structure bend in opposite 
directions and form a pair of spiral waves (figure 13 at 
t = 500 and t = 540). The period of plankton pattern oscil-
lations is equal to that of the homogeneous plankton  
distributions in the absence of fish. The temporal oscilla-
tions of the plankton patterns are similar to the changes  
in the concentration distributions initiated by rotating vor-
tices in non-oscillating active media, e.g. chemical ones 
(Murray 1977). In the course of time the number of spiral 
waves increases, and complex spatial structures like those 
shown in figure 12 form. It has been checked that these 
spirals are stable over numerical runs of 106 iterations which 
are equivalent to more than 50 real time years. However, it 
has been demonstrated that such spirals are quite sensitive 
against physical disturbances like shear flows (Biktashev 
et al 1998) or resource gradients (Malchow et al 2000). 

It is interesting that at low fish predation rates f the  
fish school motility falls drastically, and spiral waves do 
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not appear for a long time. Point wave sources occur in 
this case (figure 14). 

The formation of both spiral waves (figure 12) and 
point sources (figure 14) is followed by a dramatic decrease 
of the space-averaged plankton density oscillations 
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where S = k2, k = 64. It emerges that in contrast to phyto-
plankton oscillations at f = 2, the oscillations at f = 1 are 
characterized by aperiodic bursts that occur at the moments 
of drastic changes in the fish school location (figure 15). 

Thus, the plankton dynamics may depend on the fish 
school movement (Medvinsky et al 2000). Hence, the 
analysis of this movement is of particular interest in order 
to investigate plankton–fish interactions. 

3.4 Fish school random walks resulting from  
fish–plankton interplay 

3.4a Regularity of irregular walks: The motion of fish 
schools is controlled by various biotic and abiotic environ-
mental factors as light, temperature, salinity, nutrient (e.g. 
plankton) supply, etc. (Radakov 1973; Bocharov 1990). 
On the other hand, fish school walks that are shown to  
be essentially controlled by plankton–fish interactions 
(Radakov 1973; Ebenhöh 1980; Misund et al 1998; Med-
vinsky et al 2000) have a strong feedback on the spatio-

temporal plankton dynamics (Medvinsky et al 2000). 
Therefore, it is not surprising that fish school movement 
resulting from the interplay of fishes and their environ-
ment, can be highly irregular (Medvinsky et al 2000;  
Tikhonov et al 2000). 

An irregular behaviour exhibits very erratic features 
and is described by means of irregular functions. The  
irregular functions can display both (i) self-affine and  
(ii) multiaffine properties. If such a function (F) repre-
sents a stochastic process, it can be stated in the following 
way (Mandelbrot 1977, 1982; Feder 1988; Schroeder 
1990):  

,~|)()(| HlxFlxF 〉−+〈  (37) 

where 〈. . .〉 means averaging in case (i), and 

,~)()( )(xhlxFlxF −+  (38) 

in case (ii). The exponent H in eq. (37) is called the Hurst 
exponent. Let us note that if H < 1 then F is not differen-
tiable and that the smaller the exponent H the more singu-
lar is F. Thus, the Hurst exponent indicates how globally 
irregular the function F is. The exponent h(x) in eq. (38) 
is called the Hölder exponent. It measures how irregular 
the function F is at point x. The greater the Hölder expo-
nent the more regular is the function F. Self-affine func-
tions are qualified as fractal functions whereas multiaffine 
functions are qualified as multifractal (Feder 1988; Schroeder 
1990; Peitgen et al 1992). Multifractal functions can be 

Figure 12. Phytoplankton and zooplankton spatial distributions obtained in model (33)–(34). The den-
sity scale is given in the lower part of the figure; f = 2. 
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characterized by the multifractal spectrum D(h) that des-
cribes the distribution of the Hölder exponents and is  
the Hausdorff dimension of the subset where the Hölder 
exponent is equal to h: 

D(h) = dimH[x� h(x) = h], (39) 

where in general h can have positive as well as negative 
real values (Feder 1988; Peitgen et al 1992; Bacry et al 
1993). 

Multifractal processes can also be characterized by the 
)(αf  singularity spectrum which associates the Hausdorff 

dimension )(αf  to the subset of the support of the meas-
ure µ  where the singularity strength is α: 

f(α) = dimH[x� µ(Bx(ε))] (40) 

where Bx(ε) is an ε-box centred at x, and 

µ(Bx(ε) ~ ε α (x). (41) 

Homogeneous measures are characterized by a singularity 
spectrum supported by a single point )).(,( 00 αα f  In 
other words, only one kind of singularity is present in the 
measure. Multifractal measures involve singularities of 
different strengths. In general context, the approach based 
on the )(αf  spectrum for singular measures has a similar 
status as the approach based on the D(h) spectrum of 
Hölder exponents (Bacry et al 1993). 

Figure 13. Plankton vortex formation as a result of the fish school–plankton patch interaction. The loca-
tion of the fish school is shown by the star; f = 2. 
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As we have shown before (see § 2 and 3) the intrinsic 
spatio-temporal plankton and plankton–fish dynamics is 
apparently inhomogeneous, cf. figures 10, 11, 12, 14 and 
15 (also figure 3). This kind of inhomogeneity in special 
distribution of species is not induced by heterogeneity of 
environment but arises purely as a result of inter-species 
interactions, i.e. interactions between phytoplankton and 
zooplankton or between phytoplankton, zooplankton and 
planktivorous fish. Below we show that this inhomo-
geneity can lead to fractal properties of fish school walks. 
However, the fractal properties can also be dependent on 
the coordinates resulting not in fractal but in multifractal 
behaviour, cf. eqs (37) and (38). The questions arise whether 
or not the complex movement of the fish school can be 
described by simple eqs (37) or (38) and (if such a des-
cription is appropriate) which of the equations gives the 
best fit to the fish school movement? The answer can be 
hardly given on the base of only qualitative arguments 
without detailed quantitative considerations of the system 
dynamics. 

 
3.4b Fish school trajectories: According to the Eben-
höh rules, the fish school moves to the regions with the 
highest zooplankton density. Since the plankton distri-
bution changes in time, fish school walks appear to be 
rather chaotic. Figure 16 demonstrates typical fish school 
trajectories: both high-persistent (at f0 = 1) and low-
persistent (at f0 = 15). In both the cases hth = 0⋅35, δhth = 
0⋅01, and τth = 0⋅08. 

One can see that the transition from low fish predation 
rate to high fish predation rate is followed by an obvious 
decrease of the persistence of the fish school movement; 
indeed at f0 = 1 the fish school retains the direction of its 
movement for a very long time in comparison with the 
movement at f0 = 15. The sophisticated treatment of the 
fish school walks let us reveal characteristic features of 
both types of the fish school behaviour. 

 
3.4c Multifractal analysis of fish school walks: Recently, 
we have shown that fish school walks can be considered 
as a fractal Brownian motion with a Hurst exponent H  
depending on both the phytoplankton growth rate and the 
fish predation rate (Medvinsky et al 2000; Tikhonova  
et al 2000). But some care is required when using the 
Hurst exponent in order to analyse Brownian signals since 
such an approach may lead to conflicting estimates of H 
when the fractal function under consideration is not a  
homogeneous fractal function with a constant roughness 
associated to a unique exponent H (Arneodo et al 1996). 

In the present work, we do not expect a priori that a 
fish school trajectory is represented by a homogeneous 
fractal function and carry out the multifractal analysis of 
fish school walks (Tikhonov et al 2000). We use a stra-
tegy (Bacry et al 1993; Muzy et al 1993; Arneodo et al 
1995) which provides a practical way to determine singu-
larity spectra D(h) (39) and )(αf  (40) directly from any 
experimental signal. This approach is essentially based on 
the use of the wavelet transform (Meyer 1990; David  

Figure 14. Plankton waves emitted by the point source occurred at f = 1. The density scale is given in 
the lower part of the figure. 
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Figure 15. (a) x and y projections of the fish school movement, and averaged phytoplankton density 〈p〉
oscillations for f = 1. (b) x and y projections of the fish school movement, and averaged phytoplankton 
density 〈p〉 oscillations for f = 2. Averaged zooplankton density 〈h〉 oscillations (not shown) are phase 
shifted and qualitatively similar to the phytoplankton oscillations. 
 

(a) 

(b) 
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1991; Kahane and Lemarié-Rieusset 1995; Hubbard 1996). 
It is a space-scale analysis which consists in expanding 
signals in terms of wavelets which are constructed from a 
single function, the analysing wavelet ,ψ  by means of 
translations and dilations. The continuous wavelet trans-
form of a real-valued function F is defined as: 
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where b is the space parameter and a the scale parameter. 
The analysing wavelet ψ  is generally chosen to be well 
localized in both space and frequency. The main advan-
tage of using the wavelet transform for analysing the  
regularity of a function F is its ability to be blind to poly-
nomial behaviour by an appropriate choice of the analysing 
wavelet .ψ  Throughout this section, we will use the ana-
lysing wavelet which is called the Mexican hat because of 
its particular shape. 

The fastest way to estimate the function D(h) (39) and 
)(αf  (40) suggests the analysis of the scaling behaviour 

of the partition function Z(q, a) from the modulus maxima 
of the wavelet transform (Muzy et al 1993) 
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where i = 1, . . ., N(a), N(a) is the number of the local 
maxima of ),]([ abFWψ  at each scale a considered as a 
function of x, and the function )(aiω  can be defined in 
terms of wavelet coefficients (Muzy et al 1993; Bacry  
et al 1993) as: 
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)(aLli ∈  where L(a) is a set of connected wavelet maxima 

lines li which reach or cross a-scale. 
In the limit ,0+→a  the partition function Z(q, a)  

exhibits a power law behaviour: 

.~),( )(qaaqZ τ  (45) 

The spectrum )(αf  (40) can be found by Legendre 
transforming ),(qτ  i.e. 
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Since )(qτ  is typically differentiable, and ,0)( ≤′′ qτ  
we find that 
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Unfortunately, computing the Legendre transform has 
several disadvantages (for example, resulting from locally 
violating the inequality ).0)( ≤′′ qτ  This may lead to vari-
ous errors (Chhabra et al 1988). Therefore, another app-
roach was developed to define singularity spectra in the 
spirit of the so-called canonical method (Chhabra et al 
1988). It consists in using the two following functions: 
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Figure 16. Fish school walks at different values of f0 (shown above each of the trajectories) for which 
plankton spatial distributions shown in figure 12 are taken as initial. In the course of time these distribu-
tions did not undergo qualitative changes. For more details see (Medvinsky et al 2000). 
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Figure 17. Multifractal analysis of realizations of fractional Brownian processes B0⋅6(x) 
(a) and B0⋅9(x) (b) indexed by H = 0⋅6 and H = 0⋅9. Each of the dependencies log2 Z(a, q) vs  
log2 a, h(a, q) vs log2 a, and D(a, q) vs log2 a for each of the processes was obtained from 32 
realizations, each 212 in length. q values are shown at each of the graphs. (c) The difference 
between τ(q) obtained numerically [(eq. (45)] and its theoretical value τ(q) = qH – 1 (Muzy 
et al 1993). (d) Spectra f (α) (dashed lines) and D(h) (solid lines). 
 

(a) 

(b) 

(c) 
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and, analogous to eq. (48) 
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The spectra D(q) and h(q) are defined in the following 
way (Arneodo et al 1995): 
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From eqs (52) and (53) one computes the D(h) singu-
larity spectrum. In contrast to using the Legendre trans-
form (47), (48) such an approach makes it possible to 
avoid any instabilities related to numerical differentiation  
 
 

(d) 
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and attendant errors. On the other hand, the canonical 
method allows us to define and to evaluate the errors in 
calculating D(q) and h(q) as the variances in slope of the 
linear approximations (52) and (53) (Tikhonov et al 
2000). 
 Figure 17 demonstrates how both approaches work  
being applied to the model realization of fractional  
Brownian motion. One can see that all the functions 

aqaDaqahaqaZ 2222 log  vs),( and ,log  vs),( ,log  vs),(log
 

are essentially linear what agrees with eqs (45), (53) and 
(52), respectively. Notice (figure 17c) that the difference 
between numerical and theoretical values of )(qτ  is virtu-
ally independent on H and remains close to zero in a 
rather wide region of q. This region widens as the length 
of a realization increases. The error grows as |q| increases. 
Since the difference between numerical and theoretical 
values of τ remains different from zero for any finite  
realization, both D(h) and )(αf  fractal spectra are not  
 

Figure 18. Multifractal analysis of small scale (Ο) and medium-scale (∆) fish school 
displacements for different fish predation rates: f0 = 1 (a), f0 = 4 (b), and f0 = 15 (c). Small-
scale and medium scale displacements were obtained by splitting the fish school trajecto-
ries (like those shown in figure 16) into steps of length 23 and 25, respectively. Both the 
functions h(a, q) vs log2 a (q values are shown at each of the graphs), and the spectra D(h) 
are presented for each of the f values. The error bars take into account the variances in 
slope of the linear approximations (52) and (53). 
 

(a) 

(b) 

(c) 
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just points but form bell-like functions half-width of 
which is rather small in comparison with that characte-
ristic of any multifractal process. 

The similar narrow fractal-like spectra are typical of 
fish school displacements under a fish predation rate 
f0 = 15 (figures 18c, 19c). It is seen that ≈h 0⋅6 corres-
ponds to the maximum of D. Hence, these fish school dis-
placements can be considered as fractional Brownian  
 

motion with a Hurst exponent ≈H 0⋅6 what coincides 
well with the results obtained in (Medvinsky et al 2000). 
The singularity spectra change drastically as f0 decreases. 

Figure 18b demonstrates small-scale and medium-scale 
fish school displacements singularity spectra for f0 = 4. 
These spectra are wider and have a shape very similar to 
that typical of multifractal spectra (Bacry et al 1993; 
Muzy et al 1993; Arneodo et al 1995, 1996). 

Figure 19. Multifractal analysis of large scale fish school displacements for different fish 
predation rates: f0 = 1 (a), f0 = 4 (b), and f0 = 15 (c). Large scale displacements were 
obtained by splitting the fish school trajectories (like those shown in figure 16) of length 
219 (for f0 = 4 and f0 = 15) and 220 (for f0 = 1) into steps of length 29. The functions h(a, q) 
vs log2 a (q values are shown at each of the graphs), τ(q), the spectra f (α) (dashed lines) 
and D(h) (solid lines) are presented for each of the f values. The error bars take into ac-
count the variances in slope of the linear approximations (52) and (53). 
 

(a) 

(b) 

(c) 
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Figure 18a demonstrates some results of the multifrac-
tal analysis of small-scale and medium-scale fish school 
displacements for f0 = 1. One can see that small-scale  
displacements are characterized by essentially non-linear 
h(log2 a) dependencies. As a result, the singularity spec-
trum can not be obtained. Such a spectrum for medium-scale 
fish school displacements is shown here. It is multifractal. 

Finally, figure 19 demonstrates the results of the multi-
fractal analysis of large-scale fish school displacements. 
One can see that the function )(qτ  for the fractal move-
ment (figure 19c) is virtually linear, whereas the transition 
to multifractal )( and )( αfhD  spectra is accompanied  
by a growing non-linearity of the )(qτ  function. Such a 
non-linearity is typical of multifractal patterns (Feder  
1988). 

 
 
3.4d Concluding remarks: In this section, a hybrid model 
of spatio-temporally continuous phytoplankton–zooplankton 
but discrete agent-like planktivorous fish dynamics is pre-
sented and investigated for inherent capacities of plankton 
patch formation which is known from natural aquatic 
populations (Radakov 1973; Bocharov 1990; Jörgensen 
1994). Fish and plankton dynamics undergo continuous 
mutual adaptation. Fish school trajectories turned out to 
be essentially dependent on the fish predation rate f  
(figure 16). Any decrease of f is followed by a transition 
from low-persistent to high-persistent fish school move-
ment. The low-persistent movement demonstrates fractal 
properties for all temporal scales, whereas high-persistent 
movements demonstrate pronounced multifractal proper-
ties for large-scale displacements. In this connection, the 
problem of changes in multifractal spectra )( and )( αfhD  
resulting from season changes are of particular interest. It 
is expected that future experiments and field observations 
will be able to prove whether fish school movement can 
be characterized in such a way. 

In conclusion, the current results indicate that the rather 
simple conceptual minimal model (33)–(34) can describe 
a large variety of fish school movements which give rise 
to complex plankton spatio-temporal patterns resulting 
from prey–predator interactions and diffusion processes. 

Obviously, the results presented in this paper are merely 
a starting point for further research. First of all, the effects 
of perturbations arising from diffusive interactions between 
neighbouring habitats in inhomogeneous environment 
would be worth studying. The analysis of the plankton dyna-
mics in multi-habitat plankton–fish communities is the 
subject of our following paper (Medvinsky et al 2001). 
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